
J.  Fluid Mech. (1993), vol. 249, pp. 499-519 
Copyright 0 1993 Cambridge University Press 

499 

Large-amplitude interfacial waves on a linear shear 
flow in the presence of a current 

By GEORGE BREYIANNIS', VASILIS BONTOZOGLOU*, 
DIMITRIS VALOUGEORGIS' AND APOSTOLOS GOULAS' 
Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, 

Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece 
Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 

38334 Volos, Greece 

(Received 20 January 1992 and in revised form 23 September 1992) 

The properties of two-dimensional steady periodic interfacial gravity waves between 
two fluids in relative motion and of constant vorticities and finite depths are 
investigated analytically and numerically. Particular attention is given to the effect of 
uniform vorticity, in the presence of a current velocity, on the two factors (identified 
in the literature as dynamical and geometrical limits) which limit the existence of steady 
gravity wave solutions. The dynamical limit to the existence of steady solutions is 
found to be significantly influenced by the uniform vorticity of the lower fluid. In 
particular, the effect of non-zero vorticity is qualitatively different between a very 
shallow and a relatively deep lower fluid. Profiles and flow fields corresponding to very 
steep waves are calculated for a wide range of parameter values. The effect of uniform 
vorticity on the interfacial wave structure is demonstrated through a direct comparison 
with irrotational waves. For negative vorticity and high current velocity, a new flow 
structure is found, consisting of a closed eddy attached to the interface below the crest. 
Resemblance with shallow water waves breaking under strong air flow, (described in 
the experimental literature as roll waves) is noted. 

1. Introduction 
Liquid layers sheared by cocurrent gas (or immiscible liquid) flow appear in a variety 

of process equipment as well as in natural flows. For slightly viscous fluids in turbulent 
flow, steep gradients in the velocity profiles form close to the interface and the situation 
can be modelled by uniform velocities with a discontinuity across the interface. 
Interfacial waves in this context have been studied by many investigators (Drazin 1970; 
Maslowe & Kelly 1970; Nayfeh & Saric 1972; Saffman & Yuen 1982; Pullin & 
Grimshaw 1983 ; Miles 1986; Bontozoglou & Hanratty 1988) with particular emphasis 
on nonlinear extension of the classical Kelvin-Helmholtz instability. 

It is evident however that for sufficiently thin films or viscous liquids, vorticity will 
be distributed across the entire layer instead of being concentrated only close to the 
interface. In the limit of laminar flow the base solution (without waves) is a linear shear 
flow. Under these circumstances, a constant-vorticity liquid layer bounded by a gas in 
uniform irrotational flow, with a velocity discontinuity across the interface, seems a 
more appropriate model. This configuration could be realistic for some liquid/liquid 
flows as well, namely when the upper, lighter liquid has considerably smaller molecular 
viscosity than the lower, a representative example being the flow of water over a layer 
of heavy oil. 
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There is also evidence that the above approach could occasionally be useful even for 
gas-liquid flows with uneven vorticity distribution, in particular at the limits of short 
waves and waves long with respect to the liquid depth. In the former, the vorticity can 
satisfactorily be approximated by its local value, whereas in the latter it has been 
argued (Teles da Silva & Peregrine 1988) that it is the existence of a non-zero mean 
vorticity that is important, rather than its specific distribution. 

The present work deals with two-dimensional, inviscid waves in the aforementioned, 
constant vorticity, configuration. (An inviscid approximation seems realistic since the 
velocity profile in the liquid is typically established over timescales which are long 
compared with the wave period.) In particular, the effect of constant vorticity on the 
two different factors, (identified by Saffman & Yuen 1982 as dynamical and 
geometrical limits) which limit the existence of steady gravity wave solutions is 
investigated. The geometrical limit is associated with an unphysical shape of the wave 
as the wave height increases, while the dynamical limit is associated with the well- 
known Kelvin-Helmholtz instability. Note that recent interest in the constant-vorticity 
approximation (Simmen & Saffman 1985; Teles da Silva & Peregrine 1988; Milinazzo 
& Saffman 1990) is limited to surface waves and, to the best of our knowledge, no 
results have been reported on interfacial waves in the presence of a current. 

The waves are functions of the wave height H (  = 2a), the ratio of fluid densities r, 
the magnitude of the velocity discontinuity (current velocity) U, the distance of the 
interface from the upper and lower boundaries and the vorticities of the two layers. The 
whole parameter space is not fully described in the numerical part of the present work. 
In most cases the upper boundary is taken to infinity and the vorticity of the upper fluid 
is taken equal to zero. However, the analytical dispersion relations are complete in the 
sense that vorticity and finite depth in both fluids are included. Emphasis is given to 
small values of the density ratio (gas/liquid flows) and to values of vorticity with sign 
consistent with a shear generated by the velocity discontinuity. 

The formulation and a linear analysis of the problem is given in 92, followed by the 
development of a weakly nonlinear approximation and a numerical method in 993 and 
4 respectively. The main analytical and numerical results are presented and discussed 
in $85.1 and 5.2. Finally, some new characteristics of the flow structure of constant- 
vorticity waves in the presence of high current velocities are presented in 96, followed 
by the conclusions of the work in $7. 

2. Problem formulation and linear analysis 
The flow configuration under consideration is sketched in figure 1, where both a 

physical reference frame and a reference frame with the wave at rest are shown. The 
interface is located at y = ~ ( x )  while the top and bottom boundaries are at d, and 
-d ,  respectively. The origin is chosen so that the mean elevation ~(x) over one 
wavelength is zero. Properties of the lower fluid are denoted by subscript 1 and those 
of the upper fluid by subscript 2. The two fluids are assumed to be stably stratified by 
gravity so pz < pl, and the upper fluid is moving relative to the lower fluid with a 
horizontal velocity U. The undisturbed flow is a shear flow with a velocity that varies 
linearly in the vertical direction. The magnitude of the shear is specified by and Q 
for the lower and upper fluid respectively and the vorticities and 5, are perpendicular 
to the (x, y)-plane. The flow is assumed incompressible and inviscid, therefore the shear 
is produced by external effects. In figure 1 (a)  the flow for cl < 0 is shown, with the wave 
propagating downstream. This flow configuration is equivalent to a shear flow 
generated by the wind. Figure I (b) shows the flow pattern for > 0 and the 

__ 
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FIGURE 1. Sketch of the flow configuration. (a) Wave propagating downstream, C < 0, (b) wave 
propagating upstream, 5 > 0. (i) Physical reference frame, (ii) reference frame moving with the wave 
phase velocity. 

corresponding upstream propagation. In figure 1 the vorticity of the upper fluid is 
taken equal to zero but in general can have either sign. 

The vorticities remain uniform and constant throughout the two layers and in this 
case the fluid velocities can be written as 

and 

where the velocity potential function q$ i = 1,2, satisfies Laplace equation V2q5i = 0 in 
the entire fluid domain. 

The kinematic boundary conditions that require the interface to move with the 
vertical velocity of the fluids are 

The dynamic boundary condition of equal pressures at the interface is expressed in a 
reference frame moving horizontally with C thus rendering the interfacial wave 
motionless. This will prove more convenient for the numerical computation. Using 
(2.1) and (2.2) the following is derived: 
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where K is an unknown constant which is part of the solution. The no-penetration 
conditions at the top and bottom boundaries are 

i3$Jay = 0,  i = 1,2. (2.5) 

A first insight in the characteristics of the waves with constant vorticity may be 
obtained through linear analysis. The linearized solution of the problem is readily 
found and gives a dispersion relation which can be written as 

where x = exp ( - 2 k 4 ,  y = exp (- 2kdz), g is the gravitational acceleration, k is the 
wavenumber and I is the density ratio pz/pl. Solving the algebraic quadratic equation 
(2.6) for the linear wave speed C and taking for simplicity c2 = 0 gives 

where 

and cz, = (g/W (1 - r ) / ( X +  r Y) (2.9) 

is the dispersion relation for linearized irrotational waves in the absence of steady flow 
U. Finally, 

is the velocity of the liquid basic flow at a depth W = 1/2kX below the interface. In the 
case of surface waves (r = 0) with shear, the dispersion relation has been interpreted 
(Teles da Silva & Peregrine 1988) as showing that the waves travel symmetrically with 
respect to the flow at a depth W. In the present context, (2.7) indicates that the 
Kelvin-Helmholtz model with shear is similar to an irrotational system where the 
lower fluid moves with a uniform velocity ud. The analogy is not exact, since the 
term [C: + Xuz/ (X+ r Y)] is always greater than the linearized irrotational phase 
speed. Therefore, non-zero vorticity has through this term a stabilizing effect, while 
U-ud < U only when ud > 0. It is seen that positive vorticity linearly stabilizes 
the flow whereas negative vorticity could have either effect. 

The critical linear current velocity reduces from (2.7) to 

U, = &/2kX (2.10) 

(2.11) 

There is no loss of generality if only the positive root Uil is considered when both 
negative and positive vorticities are included. The negative root Ui1 with = -6  
corresponds to the same physical combination of shear and current, only in the 
negative x-direction. Differentiating equation (2.1 1 )  with respect to 5, taking 
aQ,/a< = 0 and substituting the resulting expression for cmin back into (2.7), yields 
that Qlmin corresponds to C = 0. Then (2.6) yields directly 

(2.12) 
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and Cmin = - 2r YkQlmin. (2.13) 

It is observed that the linear critical current velocity U,, is not a symmetric function of 
g with respect to the line g = 0. Furthermore the minimum of U,, is located in the region 
of negative vorticity. 

7 
L = -  1 

3. Weakly nonlinear approximation 
The characteristics of weakly nonlinear steady waves may be obtained by substituting 

Stokes expansions directly in the original set of equations and boundary conditions. 
This tedious algebraic manipulation is reduced when a variational principle approach 
is implemented. 

The variational principle for rotational waves given by Bateman (1944) and Luke 
(1967) reduces to 

8 # 2  - s + x w l  - 51Y)2 +gY- dY - p -r,++r(Ve, - C2YI2 + rgY dY, (3.2) 
- at 

1 
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where A = w / k  is the linear rotational wave speed given by (2.7), A' = U -  A, while the 
depth parameters x and y have been defined in $2. Equation (3.3) provides a second- 
order solution for the wave phase speed in terms of all parameters involved in the 
present formulation. The second-order dispersion relation (3.3) was originally derived 
by Pullin & Grimshaw (1986), in a slightly different context, as the interaction between 
the primary wave and its second harmonic. 

= Q = 0) equation (3.3) reduces to the second-order 
dispersion relation of Bontozoglou & Hanratty (1988). Similar dispersion relations for 
rotational waves with constant vorticity have been presented in the literature for deep- 
water surface waves by Simmen & Saffman (1985) and for interfacial waves by Pullin 
& Grimshaw (1983). The present expression reduces to the existing dispersion relations 
by choosing the appropriate set of parameters. 

For irrotational waves 

4. Numerical method 
The numerical method used is an extension of the one proposed by Bontozoglou & 

Hanratty (1988). An outline of the method is provided here for completeness, together 
with a detailed description of all necessary modifications. The reader is referred to the 
original publication for a more detailed exposition of the fundamentals. 

4.1. Outline 
The wave is characterized by its phase velocity C and the problem is solved in a 
coordinate system moving horizontally with velocity C. Equation (2.4) is applied at N 
points along the interface. These equations together with the specification of the mean 
wave elevation 7 = 0 form an algebraic system of N +  1 equations, with the profile 
elevations at N points and the combined Bernoulli constant K unknown. 

The system is solved by a variation of Newton's method. At each iteration the fluids 
velocities at the interface are calculated by applying a boundary integral method for the 
known boundary (the outcome of the last iteration) moving horizontally with the 
known velocity C. The matrix of partial derivatives is calculated numerically by 
perturbing each elevation by a small amount and computing the change in velocity at 
each point. It was found to be both efficient and timesaving to calculate the matrix 
once and use these values for all iterations. Owing to the approximation introduced by 
substituting integrals with linear sums, the set of equations is not satisfied exactly. 
Instead, the mean-square error is minimized over N points. The criterion works 
satisfactorily in the sense that it is easily driven to a minimum, which decreases by 
increasing the discretization N .  

4.2. Boundary integral method 
The boundary integral formulation is the one developed by Longuet-Higgins & 
Cokelet (1976) and extended for finite depths by New, McIver & Peregrine (1985). It 
is used to calculate the irrotational part of the velocity field, while the rotational 
contribution is incorporated according to (2.1) and (2.2). 

The transformation 
9 (4.11 = yeiO = ,Ti(s+iu) 

is applied (for the lower/upper fluid respectively), mapping one wavelength of the 
interface to a closed curve C, and the horizontal boundary y = -dl (or y = d,) to a 
circle C,  of radius exp(-d,) (or exp(d,) respectively). The transformed z-plane is 
shown in figure 2. 
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FIGURE 2. The transformed z-plane showing the construction of Green’s function. 

Suppose x is fixed at some point on the fluid boundary C, and 5 is allowed to vary 
along C,. Let (s ,n)  be the tangential and normal coordinates at a point 5 on the 
boundary. Green’s third identity is invoked using as Green’s function 

1 1 
G(x;r) = -ln(lC-xlIC*--xl) = -lnR(x;C), 

2n: 27t 

with <* = e-2dc/l<[2. By integrating along C, (the contribution from C, is identically 
zero) the following integrodifferential equation is derived : 

(4.2) 

an (4.3) 

where a(x; C) = arg (5 - x) - arg (C* - x) and the right-hand side is a principal-value 
integral. The essence of the method is that a$/& is known from the kinematic 
boundary conditions (2.3), and (4.3) can be discretized to calculate a$/as and 
subsequently the velocity magnitudes appearing in (2.4). 

For waves of permanent form, the kinematic boundary conditions lead to 

If N = (- aq/ax, 1)/[ 1 + ( a q / a ~ ) ~ ] ;  is the unit normal to the interface, (4.4) becomes 

This is the correct boundary condition which needs also to be transformed to the z- 
plane before being used with (2.4). 

17 F L M  249 
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FIGURE 3.  Critical current U,, as a function of wave height H for density ratio r = 0.001, 
exp (- a,) = 0.5 and various vorticities 5. 

It is seen that by introducing a constant-vorticity model only a slight modification 
of the method proposed by Bontozoglou & Hanratty (1988) is required in order to 
obtain a numerical code for waves on a linear shear flow. 

5.  Results 
The results presented are dimensionless quantities. All lengths are non-dim- 

ensionalized with the wavenumber k and the velocities are represented as Froude 
numbers using k-l as characteristic length. All actual computations have been 
performed by taking the wavelength L = 27c (k  = l), the lower fluid density p1 = 1 and 
the gravitational acceleration g = 1. 

5.1. Analytical results 

It can be seen from (2.7) that for linear waves there are two solutions with different 
phase velocities C. These merge into one and subsequently disappear when U exceeds 
the critical value U,, given by (2.1 1). 

For finite-amplitude waves (a $; 0) these two solutions continue into two families 
C+(a) and C-(a). From the form of the second-order dispersion relation (3.3) it can be 
seen that there will again be a critical current U, beyond which steady solutions no 
longer exist. An increase in V,  with increasing wave amplitude has been viewed by 
Saffman & Yuen (1982) as a stabilization of parallel flows by waves. This is so because, 
for V,, < U < U,, steady linear waves do not exist whereas finite-amplitude ones are 
possible (whether these finite-amplitude waves are stable or not is a different question). 
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On the other hand, a decrease in V, with increasing wave amplitude has been observed 
by Bontozoglou & Hanratty (1988) for very thin liquid films in irrotational flow, 
limiting the existence of large steady waves even for U < 

A main focus of the present work is to determine the dependence of this 
phenomenon on the vorticity and thickness of a linearly sheared liquid film. Therefore, 
an irrotational upper fluid of infinite extend is considered (& = 0, y = 0) and the 
critical current velocity correct to second order, &, is obtained by equating the two 
roots in (3.3). Upon setting for simplicity C1 = and using the non-dimentionalization 
mentioned above, the following expression is obtained : 

where ud is the liquid velocity defined by (2.10) and 

X 
X- 

( 1  -x)2 
1 +- 
2 

1-xz +z 1 +4x+x2  - rh" - 2h5 

1 -x 
l + x  

h2 __ + rh" 

Again, only the positive root of (5.1) need to be considered. Using (2.11) for the linear 
velocity ql, equation (5.2) can be reformulated to read 

which in the limit 5 = 0 agrees with the expression given by Bontozoglou & Hanratty 
(1988). It is readily seen from (5.3) that [( U,, - ud)'/( V,, - ud)2 - 11 varies linearly with 
the square of the wave amplitude, a2, with the slope of the line dictating whether U, is 
a decreasing or increasing function of a. A representative plot is shown in figure 3, 
where it is seen that vorticity may have a significant effect. 

The slope of the dynamical limit line as a function of exp (- dl) is shown in figure 
4(a ,  b) for five values of constant vorticity, including the irrotational case, and for 
density ratios r = 0.001 and 0.1 (representative of gas/liquid flows under low and high 
pressure). It is interesting to note that regions with negative slope still exist and large 
values of vorticity cause the transition to a negative slope for a thicker liquid layer. The 
abrupt decrease in the value of the slope for very thin films is seen to take place for both 
positive and negative vorticities. The effect of vorticity is more evident for r = 0.1 and 
it is seen to be non-monotonic. Indeed, for deep liquid layers the dynamical limit slope 
is an increasing function of the vorticity value. On the other hand, in the limit d, --f 0, 
the slope tends to become a decreasing function of the absolute value of vorticity 
(irrespective of sign). 

The above observations are reconfirmed by numerical computations, which indicate 
that the exact values of V, compare well with the weakly nonlinear approximation for 
small to intermediate amplitudes. 

5.2. Numerical results 
The computational results presented in this section cover a region of the five-parameter 
space under investigation. Prominent parameters are the vorticity { of the lower layer 
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FIGURE 5. Critical current V, as a function of wave height H for density ratio r = 0.1, exp (- d,) = 
0.25 and various vorticities 6. Straight lines represent the weakly nonlinear approximation and 
discrete points the fully nonlinear solution: 0, 5 = 2; 0 5 = 1 ; a, 5 = 0, +, 5 = - 1; ., 5 = -2. 

Wave height 

Vorticity Depth Phase Present work - Present work - Teles da Silva & 
5 d velocity analytical results numerical results Peregrine (1988) 

1 1 1.3580 0.5117 0.4998 0.50 
1 1 1.442 1 1.0905 0.9999 1 .o 

-1 1 0.5883 0.1175 0.1200 0.12 
3 2 3.4440 1.0273 1 .oooo 1 .o 

TABLE 1. Comparison of results for surface waves 

which varies from - 2 to + 2 (the upper layer is assumed to be irrotational), the current 
velocity U which varies from 0 to U,, and the amplitude H which varies from 0 to the 
extreme value allowed by the numerical method implemented. The density ratio is 
taken equal to 0.0013 (typical value for air-water waves) and 0.1, while the parameter 
x which characterizes the depth of the lower layer varies from 0 to 1. The upper 
boundary is taken to the limit y = 0 (dz+co). 

The presented numerical results are based on a 64-point collocation scheme while the 
iteration procedure is considered to have converged when the residuals are less than 
lop4. In order to establish some confidence in the numerical results a comparison is 
made in table 1 with existing results for surface waves (Teles da Silva & Peregrine 
1988). It is seen that the accuracy to expect from the code is satisfactory). 
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FIGURE 6. Profiles of high-amplitude waves for r = 0.0013, exp(--d,), = 0.25 and vorticities: 0, 
5=2 ;  0,  5 =  1; -, { =  0;  +, 6 = - 1 ;  4, 5 =  - 2 .  The current velocity is (a) U =  0, (b) U =  10, 
( c )  U = 20, (d) U = 25. 

The numerical results always compare well with the weakly nonlinear approximation 
for small and intermediate waves, for any density ratio and depth. This is demonstrated 
in figure 5 for the particular case of the critical current velocity, V,, beyond which 
steady solutions cease to exist. The coordinates are such that the weakly nonlinear 
solutions are straight lines through the origin (see (5.3)). The agreement with the 
numerical results is excellent for small waves, while for higher waves the weakly 
nonlinear theory underestimates the critical current velocity compared to the fully 
nonlinear solution for any value of vorticity <. 

Representative examples of the effect of positive and negative vorticity on the shape 
of the wave and the corresponding x-velocity component of the lower fluid at the 
interface of some high-amplitude air-water ( r  = 0.0013) waves are shown in figures 6 
and 7 respectively. Since only waves symmetric about the crest are considered the wave 
profiles and velocities are plotted versus half the wave phase. The depth of the lower 
layer is exp (- d,) = 0.25 and the current velocity U is 0, 10, 20 and 25 in (a), (b), (c) 
and (d) respectively. In all figures the irrotational waves (5  = 0) are included to provide 
a direct comparison with the rotational waves of constant vorticity ([ = f 1, f 2). 

It is seen from figure 6 that the presence of positive vorticity increases the amplitude 
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of the waves which become more rounded, while the presence of negative vorticity 
produces waves with smaller amplitudes and sharper crests. This result is clearer for 
small values of current velocities U, having been described for free-surface waves by 
Tsao (1959), Simmen & Saffman (1983) and Teles Da Silva & Peregrine (1988), while 
the effect of large current velocities U (close to V,) on the shape of the waves seems to 
counterbalance the effect of vorticity. 

The x-component of the velocity versus wave phase, shown in figure 7 in a physical 
reference frame, corresponds to the air-water waves shown in figure 6. Note that the 
large regions of almost constant horizontal velocity; which characterize interfacial 
irrotational waves with large current velocities U, disappear under the effect of 
vorticity. Now the point of a maximum x-velocity is clearly identified and for all cases 
with sufficiently large positive vorticity it is away from the crest even for small U 
(Stokes waves). 

It is clear that the overall shape of the wave and the x-velocity component of the 
lower fluid at the interface are strongly affected by the vorticity 5. It may be concluded 
that large values of positive vorticity allow the existence of high-amplitude waves with 
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various vorticities 5. The current velocity is (a) U = 0, (b)  U = 10, (c) U = 20, (4 U = 25. Curves 
represent the weakly nonlinear approximation and discrete points the fully nonlinear solution. 

higher velocities. On the other hand the presence of negative vorticity, which 
corresponds to shear generated by the wind, favours the existence of waves of small 
amplitude with small velocities. This result holds for any U although it is more evident 
for small U. Similar results have been found for exp (- d,) = 0.5. 

The phase velocities of waves for a wide range of vorticities for exp (- 4 )  = 0.25 are 
given in figure 8. Again the current velocity U is 0, 10, 20 and 25 in (a), (b), (c) and (d) 
respectively. As with rotational surface waves, phase velocities increase with amplitude 
for any U. However it is seen that for negative values of vorticity and large current 
velocities U the phase velocity becomes almost independent of H and equal to the 
linear phase speed of the wave. One of the implications of this result is that the iterative 
procedure becomes more vulnerable to numerical instabilities and may diverge. This 
behaviour becomes more evident when the depth of the lower layer decreases. 

It is well known that, as the wave height increases, the x-velocity component at some 
point along the profile approaches the phase speed of the wave. Holyer (1979), 
extending Stokes limit for free-surface waves, considered the condition u = C as a 
geometrical limit. However, Meiron & Saffman (1983) and Grimshaw & Pullin (1986) 
have demonstrated that S-shaped overhanging waves, although subject to Ray- 
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FIGURE 9. Wave profile and velocity components of the lower fluid at the interface for H = 0.756, 
C = 0.190, U = 25, r = 0.0013 and exp(-d,) = 0.25. -, Wave profile; ---, x-velocity; ----, 
y-velocity . 

leigh-Taylor instability, are steady solutions of the governing equations. Furthermore, 
regions with x-velocity higher than the phase speed are associated with these steady 
overhanging waves. Having all this in mind it is rather interesting to observe the 
horizontal and vertical velocity components of the lower fluid along the interface, 
shown in figure 9 in a physical reference frame for H = 0.756, C = 0.190, U = 25, 
r = 0.0013, 5 = - 1, and exp(-dJ = 0.25. It is readily observed that the value of the 
x-velocity component at the wave crest is larger than the phase speed C and it drops 
to C at some point A, while the wave profile does not have an infinite slope at this 
point or anywhere else. This discrepancy is clarified by noticing that the y-velocity 
component goes through zero at this point A and then changes sign as the crest is 
approached. Point A, therefore, is a stagnation point in the reference frame where the 
wave is stationary, as is its symmetric counterpart relative to the wave crest. 

This result is a first indication of a new flow structure consisting of a recirculating 
eddy at the wave crest. A detailed description of this is given in the next section. 

6. High-amplitude waves with separated flow 
The aforementioned flow structure, which, in a stationary reference frame includes 

two stagnation points on the interface and contains a recirculating eddy at the crest, 
has been repeatedly encountered for negative values of vorticity in the present work. 
For fixed values of the parameters r ,  U,  d, and [ (5  < 0), it appears only above a certain 
wave amplitude. Representative velocity fields are shown in figure 10 for air-water 
(r = 0.0013) waves with U = 25 and exp ( -dl)  = 0.25. In this case a stagnation point is 
first observed at the crest at a wave height H = 0.302 and then expands with increasing 
amplitude to generate a closed eddy. 

The wave height at which the recirculating eddy first appears, for a given density 
ratio and depth, is a function of the current velocity and the vorticity of the liquid layer. 
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FIGURE 10. Expansion of the separated region with increasing wave amplitude for U = 25, r = 0.0013, 
% = - 1  andexp(--d,)=0.25. (a )H=0.302 ,  C=O.168, (b) H=0.620, C=0.180, (c)H=0.924, 
c = 0.210. 
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FIGURE 11. Sketch of wave solution domain with and without an eddy at the crest for r = 0.0013, 
5 = - 1 and exp(-d,) = 0.25. 

The solid line in figure 11 shows the boundary in the (H ,  U) solution domain between 
waves with and without an eddy at the crest for r = 0.0013, 5 = - 1 and exp (-4) = 
0.25. The region comprising waves with separated flow is above this boundary and is 
bounded from the right by the dynamical limit which appears in the figure and from 
the top by the geometrically limiting highest waves, which have not been rigorously 
calculated in the present work. It is readily observed from figure 11 that the higher the 
current velocity U, the earlier the separation occurs. It can also be inferred from figure 
11 that separation eddies should not be observed below a certain current velocity. This 
fact explains why such eddies have not been reported for surface waves by Simmen & 
Saffman (1985) and Teles Da Silva & Peregrine (1988). In this sense, the closed eddy 
at the wave crest can be considered as an effect of the wind. Representative calculations 
with g = -2, and exp( -dl) = 0.5 indicate that increasing the absolute value of the 
vorticity or decreasing the depth of the lower fluid leads to the appearance of the 
separation eddy at lower wave amplitudes. 

One particular observation from figure 11 is that all waves, above a current velocity 
roughly equal to U = 28, comprise a separation eddy. Velocity fields for different wave 
heights are shown for such a case in figure 12 with U = 30, 6 = - 1 and exp (- dl)  = 
0.25. From figure 12 it can be observed that, for the smaller amplitude, the separated 
region consists of an elongated eddy containing almost the entire liquid volume above 
the level of the trough. With increasing wave height, the separation eddy approaches 
a more rounded shape but still covers the major part of the wave crest. An interesting 
consequence is that the distortion in the flow field caused by the wavy interface is, with 
the appearance of this prominent separated region, largely confined to the crest of the 
wave. Indeed, the flow field below the upper part of the wave is almost identical to the 
base flow. Evidently this is not the case for relatively large wave heights in the absence 
of the recirculating eddy. 

The onset of flow separation can be understood as a straightforward consequence of 
the constant-vorticity model, by the following simple arguments. Figure 1 (a, b) 
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FIGURE 12. Streamlines of lower fluid for U = 30, r = 0.0013, 5 = - 1 ,  exp(-dl) = 0.25 and 
different wave heights. (a) H = 0.368, C = -0.210, (b) H = 0.786, C = -0.110, (c)  H = 1.166, 
C = -0.035. 

represents the shear profile for two cases, one with negative and one with positive 
vorticity. Two reference frames are depicted, the one to the right corresponding to a 
wave stationary on a stream. It is seen that, for positive phase velocity C, a critical layer 
in the classical sense of linear stability, can only occur for positive vorticity (figure 1 b). 
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This setup has been considered by Teles da Silva & Peregrine (1988) for free surface 
waves. They further point out that, with a critical layer, ‘cat’s eye’ eddies form for any 
finite-amplitude wave. 

The situation is more interesting when a critical layer forms above the mean water 
level and, therefore, does not manifest itself unless the waves reach a certain height. 
This is possible for flow with negative vorticity, as shown in figure 1 (a).  It is believed 
that this occurrence is the generating mechanism for the separation eddies in figure 10 
and, further, dictates the extend of the separation region. It is also noted that, for 
current velocities U near the limiting value, the phase speed of the waves becomes 
negative and the critical layer occurs slightly below the mean level. This situation 
produces the extended separation eddies depicted in figure 12. The above simplified 
arguments do not consider the straining imposed by the irrotational wave motion, 
which is taken into account in the present numerical computations. 

7. Concluding remarks 
Interfacial, gravity waves of permanent form are calculated - both analytically and 

numerically - in a configuration involving a lower fluid with constant vorticity, 
bounded by an upper fluid in uniform motion. 

The dynamical limit to the existence of steady solutions is calculated and the effect 
of non-zero vorticity appears to be significant. In particular, previous observations 
about the slope of the curve of the critical current velocity versus wave amplitude 
turning from positive to negative for very thin films (Bontozoglou & Hanratty 1988) 
are shown to hold for deeper films in the presence of non-zero vorticity. 

It is recalled that the existence/non-existence of steady solutions at current velocities 
above the critical linear is associated with supercritical stability/subcritical instability 
(Miles 1986). In this light, the transition of the dynamical limit slope from positive to 
negative can be taken to signify a change in the behaviour of linearly unstable 
disturbances on such thin films. In particular, a positive slope is argued to indicate that 
the fundamental harmonic remains dominant and finite-amplitude gravity waves will 
actually be observed. On the other hand, a negative slope of the dynamical limit line 
indicates that during nonlinear evolution all superharmonics are simultaneously 
excited (Drazin & Reid 1981), leading to a pebbly interface with no observable gravity 
wave. These inferences are in accordance with experimental observations (Andreussi, 
Asaly & Hanratty 1985), which indicate that roll waves do not appear on very thin 
films, even when they are sheared by gas flows well above the linear stability limit. 

The effect of positive and negative vorticity on the wave profile and on the velocity 
field of the lower fluid in the presence of a current velocity is demonstrated in the 
present work. An unexpected flow structure, involving a closed eddy on the wave crest, 
is calculated for the case of negative vorticity and high enough wave amplitude. Its 
earlier manifestation, where the separation region shrinks to a point, corresponds to a 
stagnation point in the steady flow, right on the crest of the wave. 

This configuration has been considered to be the onset of incipient breaking (Banner 
& Phillips 1974) in the similar situation of a drift current on top of an irrotational mass 
of water. The present work provides numerical evidence for the existence of progressive 
waves of permanent form beyond the point of incipient breaking. Thus, it is an example 
where the conjecture of Banner & Phillips (1974) that ‘if the flow is rotational there is 
no necessity for the stagnation point at the crest to be associated with a discontinuity 
in surface slope’ (i.e. a geometrical singularity) holds true. It should be remembered, 
however, that in the actual configuration considered by the above authors, Miche 
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(1944) shows that a stagnation point at the crest is always associated with a 120” angle. 
Thus, the recirculating eddy at the wave crest can be considered as an effect of the wind. 

The present problem differs from the one posed by Banner & Phillips (1974) in that 
the constant-vorticity region extends throughout the entire lower fluid. Therefore, it 
more closely represents shallow-water waves breaking under the action of wind. These 
are frequently described in the experimental literature as roll waves, from the 
distinctive appearance of the crest region which seems to constantly roll over itself. 

The ability of the inviscid, rotational theory to provide steady wave solutions 
beyond incipient breaking is interesting from a fundamental standpoint. The crucial 
question, however, remains of whether these solutions are a realistic representation of 
actual roll waves. This issue is not pursued any further in the present work and remains 
to be investigated. It is only noted that there is an encouraging qualitative resemblance 
with actual waves, in that closed eddies appear only above a current velocity. 
Furthermore, the picture of the crest eddy - rolling on a substrate whose flow field is 
close to the basic flow - which emanates from the present computations, is similar to 
experimentally observed roll waves on highly sheared thin films (Hanratty 1983). 

Finally, it is noted that some of the parameters considered here, though formally 
independent as far as inviscid theory is concerned, are actually related in real flows. For 
example if the shear is generated by the gas flow, 6 and U depend on each other and 
realistic estimates can be made by considering a turbulent velocity profile in the gas and 
calculating the shear stress exerted on the flat liquid surface. Such considerations will 
be pursued in future work and will help in viewing the theoretical results from a more 
applied perspective. 

Appendix 

the wave profile 
and the velocity potentials 

$,(x, y ,  t )  = A ,  (eky + e-2kd1 e-ky) sin w + $4,(ezkv + e-4kd1 ecZk2/) sin 2w (A 2) and 
$,(x, y ,  t )  = Ux + Bl(eky + eZkd2 ecky) sin w +$B,(ezkv + e4kd2 e-’@) sin 2w, (A 3) 

into expression (3.2). In the above expansions a is half the wave height ( H  = 2a) and 
w = kx-wt  is the wave phase. Next, taking the partial derivatives of the resulting 
expression with respect to coefficients A,, A,, B,, B2 and a, yields 

(A 4) 
(A 5 )  

The dispersion relation (3.3) is derived by substituting the leading-order terms for 

(A 1) ~ ( w )  = a cos w + a, cos 2w, 

A,  = h a / ( l  -x), 
B, = -A’a/(l  -y-,), 

a, = $az 

[“;[“21+4x+x2 (1 -x)2 - rh” 1+4y+y2] (1 -YI2 -2k [ AS1 1+x2+x -rh/gz1 + ’ 2 ~ y ] + i ( ~ - r ~ : )  1 -Y 

+ r X 2  
1 +x2 - [g( 1 - r)  + hy, + rh’6.J + 2k A’- ~ 

1 +’I -y’ [ 1-x2 
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Finally, substituting the above coefficients back into the Lagrangian (3.2), and after 
some algebraic manipulations of the resulting equation, the second-order dispersion 
relation (3.3) is obtained. 
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